0 CpxTRS
↳1 DecreasingLoopProof (⇔, 92 ms)
↳2 BOUNDS(n^1, INF)
↳3 RenamingProof (⇔, 0 ms)
↳4 CpxRelTRS
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 typed CpxTrs
↳7 OrderProof (LOWER BOUND(ID), 0 ms)
↳8 typed CpxTrs
↳9 RewriteLemmaProof (LOWER BOUND(ID), 317 ms)
↳10 BEST
↳11 typed CpxTrs
↳12 RewriteLemmaProof (LOWER BOUND(ID), 36 ms)
↳13 BEST
↳14 typed CpxTrs
↳15 LowerBoundsProof (⇔, 0 ms)
↳16 BOUNDS(n^1, INF)
↳17 typed CpxTrs
↳18 LowerBoundsProof (⇔, 0 ms)
↳19 BOUNDS(n^1, INF)
↳20 typed CpxTrs
↳21 LowerBoundsProof (⇔, 0 ms)
↳22 BOUNDS(n^1, INF)
w(r(x)) → r(w(x))
b(r(x)) → r(b(x))
b(w(x)) → w(b(x))
w(r(x)) → r(w(x))
b(r(x)) → r(b(x))
b(w(x)) → w(b(x))
They will be analysed ascendingly in the following order:
w < b
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
The following defined symbols remain to be analysed:
w, b
They will be analysed ascendingly in the following order:
w < b
Induction Base:
w(gen_r2_0(+(1, 0)))
Induction Step:
w(gen_r2_0(+(1, +(n4_0, 1)))) →RΩ(1)
r(w(gen_r2_0(+(1, n4_0)))) →IH
r(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
w(gen_r2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
The following defined symbols remain to be analysed:
b
Induction Base:
b(gen_r2_0(+(1, 0)))
Induction Step:
b(gen_r2_0(+(1, +(n130_0, 1)))) →RΩ(1)
r(b(gen_r2_0(+(1, n130_0)))) →IH
r(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
w(gen_r2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
b(gen_r2_0(+(1, n130_0))) → *3_0, rt ∈ Ω(n1300)
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
No more defined symbols left to analyse.
Lemmas:
w(gen_r2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
b(gen_r2_0(+(1, n130_0))) → *3_0, rt ∈ Ω(n1300)
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
No more defined symbols left to analyse.
Lemmas:
w(gen_r2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
No more defined symbols left to analyse.